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Abstract

Effects of thermoacoustic wave motion on the developing natural convection process in a compressible gas-filled

square enclosure were investigated numerically. In the cases considered, the left wall temperature is raised rapidly

(impulsively or gradually) while the right wall is held at a specified temperature. The top and the bottom walls of the

enclosure considered are thermally insulated. The numerical solutions of the full Navier–Stokes equations were ob-

tained by employing a highly accurate flux-corrected transport algorithm for the convection terms and by a central

differencing scheme for the viscous and diffusive terms. The strength of the pressure waves associated with the ther-

moacoustic effect and resulting flow patterns are found to be strongly correlated to the rapidity of the wall heating

process. Fluid thermal diffusivity was found to affect the strength of the thermoacoustic waves and the resulting in-

teraction with the buoyancy-induced flow.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When a compressible fluid is subjected to a rapid

temperature increase at a solid wall, part of the fluid in

the immediate vicinity of the boundary expands. This

gives rise to a fast increase in the local pressure, and

leads to the production of pressure waves called ther-

moacoustic waves. The heat transfer effects of such

waves may be very significant when the fluid is close to

the thermodynamic critical point or when other modes

of convection are weak or absent. This motion may

cause unwanted disturbances in otherwise static pro-

cesses like cryogenic storage or may introduce a con-

vective heat transfer mode to the systems in zero-gravity

environment where it is assumed that conduction is the

only heat transfer mode. Low-heat-diffusivity character

of near-critical conditions makes thermoacoustic con-

vection mode of heat transport very significant for

cryogenic storage systems which involve rather weak

diffusive and convective transport of heat especially in

reduced gravity environment. Because of high density

and compressibility values of fluids in these systems,

strong thermoacoustic waves are produced and heat

transfer effects of these waves become critical due to the

possibility of sudden phase change in the storage system.

The problem of thermoacoustic waves in a quiescent

semi-infinite body of a perfect gas, subjected to a step

change in temperature at the solid wall was studied an-

alytically [1] in order to determine how the sound in-

tensity depends on the wall temperature history. The

one-dimensional compressible flow equations were lin-

earized and a closed-form asymptotic solution was ob-

tained using a Laplace transform technique. A simplified

model (the hyperbolic equation of conduction) for

thermoacoustic motion was compared with one-dimen-

sional Navier–Stokes equations model of the phenom-

ena and limitations of the simplified approach was

discussed [2]. A more general class of solutions for the

thermoacoustic waves was obtained by using the La-

place transform method with numerical inversion for

equations of the linear wave model for step and gradual
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changes in the boundary temperature [3]. The equations

of the nonlinear wave model were numerically solved

using finite differences scheme modified with a Galerkin

finite element interpolation in space. A similar analysis

for thermoacoustic waves in a confined medium was

repeated more recently [4]. In both geometries the me-

dium considered was a gas with Prandtl number of 0.75.

Thermoacoustic convection phenomena were experi-

mentally investigated in a cylinder containing air with

temperature measurements in normal and reduced

gravity environment [5]. No pressure measurement was

reported. Experimental measurements of pressure waves

generated by rapid heating of a surface were reported in

a relatively recent paper [6].

Numerical studies of one- and two-dimensional

thermoacoustic waves in a confined region have been

carried out [7,8]. These computational studies described

finite-difference solutions of the compressible Navier–

Stokes equations for a gas with temperature-indepen-

dent thermophysical properties. The solutions were

obtained by employing first-order upwind schemes to

solve the governing equations, and as a consequence, the

results showed effects of substantial numerical diffusion.

The mechanisms of heat and mass transport in a side-

heated square cavity filled with a near-critical fluid were

explored [9], with special emphasis on the interplay be-

tween buoyancy-driven convection and the piston effect.

In a recent paper, it was shown that rapid heating of

a solid surface bounding a region of gas generates a

slightly supersonic wave with positive amplitude in

pressure, temperature, density and mass velocity [10].

The one-dimensional predictions were in good qualita-

tive agreement with prior experimental measurements of

the shape, amplitude and rate of decay of the pressure

waves. Using a high-order numerical scheme, the early

time behavior of thermoacoustic waves in a compress-

ible-fluid filled cavity was predicted with a computa-

Nomenclature

A overheat ratio

E total energy

g gravitational acceleration

k thermal conductivity

L width and height of the enclosure

Nu Nusselt number (¼ hL=k�f )
p pressure

Pr Prandtl number (¼ m�f =a
�
f )

q heat flux

R specific gas constant

Ra Rayleigh number (¼ gbfðT �
L � T �

RÞL3=m�f a�
f )

t time

T temperature

u velocity in the horizontal direction

v velocity in the vertical direction

x horizontal coordinate

y vertical coordinate

Greek symbols

a thermal diffusivity

b volumetric thermal expansion coefficient

(¼ 1=T �
f )

c ratio of specific heats

l dynamic viscosity

m kinematic viscosity

q density

s shear stress

sc travel time for the acoustic wave to traverse

the enclosure width

sh time constant for wall heating

Superscript

� dimensional variable

Subscripts

0 initial

f property value evaluated at reference tem-

perature

L left

M wall location

n direction normal to the wall

R right

Fig. 1. Geometry and the boundary conditions of the problem.
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tional study [11] in which temperature dependent fluid

properties were used.

In the present paper, the effects of thermoacoustic

waves on buoyancy-induced flow fields are studied for a

square enclosure with side length L ¼ 13 mm (Fig. 1).

The horizontal walls of the square enclosure are con-

sidered to be insulated whereas the vertical walls are

isothermal. Initially the gas and all walls are in thermal

equilibrium (T � ¼ T �
R everywhere). At t� > 0, the left

wall temperature is increased to a value T �
L (T

�
L > T �

R)

either suddenly or gradually. The strength of the ther-

moacoustic waves depend on the rapidity of the wall

heating, and the interaction effects are significant only

for the early times. We also investigate the effects of fluid

properties on the interaction process.

2. Mathematical model

Interaction of thermoacoustic waves and buoyancy

problem is described by the Navier–Stokes equations for

a compressible fluid. These equations is expressed in

vector form with dimensionless variables as

oU

ot
þ oF

ox
þ oG

oy
¼ oFv

ox
þ oGv

oy
þ B ð1Þ

where t is the time and x and y refers to the Cartesian
coordinates. The vectors represent

U ¼

q

qu

qv

E

2
6664

3
7775; F ¼

qu

qu2

quv

ðE þ pÞu

2
6664

3
7775

G ¼

qv

quv

qv2

ðE þ pÞv

2
6664

3
7775

ð2Þ

Fv ¼

0

Prðsxx � pÞ
Prsxy

usxx þ vsxy � dqx

2
6664

3
7775

Gv ¼

0

Prsxy
Prðsyy � pÞ

usxy þ vsyy � dqy

2
6664

3
7775

B ¼

0

0

qRaPr=2e

qvRa=2e

2
6664

3
7775

ð3Þ

where q is the density, u and v are the velocity compo-
nents, p is the pressure, g is the gravitational accelera-

tion, Ra is the Rayleigh number, Pr is the Prandtl
number and E is the total energy. The components of the
stress tensor s are

sxx ¼ l 2
ou
ox

�
� 2
3
r � v

�

syy ¼ l 2
ov
oy

�
� 2
3
r � v

�

sxy ¼ l
ou
oy

�
þ ov
ox

�
ð4Þ

where l is the dynamic viscosity and r � v is the diver-
gence of the velocity vector. The components of the

heat-flux vector are written as

qx ¼ �k
oT
ox

; qx ¼ �k
oT
oy

ð5Þ

where k is the thermal conductivity. The dimensionless
variables are

x ¼ x�

L
; y ¼ y�

L
; t ¼ t�a�

f

L2

u ¼ u�

a�
f =L

; v ¼ v�

a�
f =L

q ¼ q�

q�
f

; l ¼ l�

l�
f

; a ¼ a�

a�
f

k ¼ k�

k�f
; T ¼ T � � T �

R

T �
L � T �

R

e ¼ T �
L � T �

R

T �
L þ T �

R

; d ¼ k�f L
2ðT �

L � T �
RÞ

q�
f m

�
f a

�2
f

p ¼ p�

q�
f m

�
f a

�
f =L2

; E ¼ E�

q�
f m

�
f a

�
f =L2

ð6Þ

Rayleigh, Prandtl and Nusselt numbers are defined

based on the fluid thermophysical properties evaluated

at the reference temperature T �
f :

T �
f ¼ T �

L þ T �
R

2
ð7Þ

Total energy is given by

E� ¼ q�RT �

c � 1 þ 1
2

q�ðu�2 þ v�
2Þ ð8Þ

Here R is the specific gas constant of the medium and c is
the ratio of specific heats. The temperature is related to

the density and pressure through the ideal-gas law:

p� ¼ q�RT � ð9Þ

3. Numerical scheme

The governing equations (except for the diffusion

terms) are discretized using a control-volume-based

finite-volume method based on the flux-corrected trans-

port (FCT) algorithm. FCT is a high-order, nonlinear,
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monotone, conservative and positivity-preserving

scheme designed to solve a general one-dimensional

continuity equation with appropriate source terms. This

scheme has fourth-order phase accuracy and is able to

resolve steep gradients with minimum numerical diffu-

sion. In this algorithm, when a flow variable such as a

density is initially positive, it remains positive during the

computations and no new minimum or maximum values

are introduced due to numerical errors in the calculation

process. To ensure positivity and stability, a minimum

amount of numerical diffusion over the stability limit is

added at each time step. Time-step splitting technique is

used to solve the two-dimensional problem addressed

here. Further details of the FCT algorithm used here are

documented in [12]. The diffusion terms (the viscous

term in the momentum equations and the conduction

terms in the energy equation) were discretized using the

central-difference approach and the time-step splitting

technique was used to include the terms in the numerical

scheme. Time-step splitting technique was also used to

include the gravity term in the y-momentum equation

and the viscous dissipation terms in the energy equation.

No-slip boundary conditions were used for all the

solid walls. Time-dependent boundary conditions for

the vertical walls and zero-gradient temperature bound-

ary conditions for the horizontal walls were used. A

high-order non-dissipative algorithm such as FCT re-

quires rigorous formulation of the boundary conditions.

Otherwise, numerical solutions may show spurious wave

reflections at the regions close to boundaries and non-

physical oscillations arising from instabilities. In the

present computational method, the treatment proposed

by Poinsot and Lele [13] was followed for implementing

the boundary conditions for the density. Along any solid

wall, the density is calculated from

oq�

ot�

� �
M

þ 1

cM

op�

on

�
þ q�c

ou�n
on

�
M

¼ 0 ð10Þ

where cM is the acoustic speed, M indicates the location

of the wall and n is the direction normal to the wall.

4. Results and discussion

Numerical simulations of the thermoacoustic wave

motion and its interactions with the buoyancy-induced

flow fields were performed for a square enclosure filled

with nitrogen gas, initially quiescent at 1 atm pressure

and 300 K temperature. For all computations, non-

uniform grid structure was employed with 141	 141
computational cells. Variation of the fluid properties

with temperature was taken into account. Results of our

prior investigation [11] on the very short time behavior

of the thermoacoustic waves generated by impulsive and

gradual heating of a wall were in very good agreement

with the results given in the literature. In the present

study, longer time behavior of the pressure waves pro-

duced by a step change (impulsive heating) at the left

wall temperature of the enclosure was investigated. For

impulsive heating, the left wall temperature is given by

T �
L ¼ T �

0 ; t� ¼ 0
T �
0 ðAþ 1Þ; t� > 0

	
ð11Þ

where T �
0 is the initial temperature (T

�
0 ¼ T �

R) and A is the
overheat ratio,

A ¼ T �
L � T �

R

T �
R

ð12Þ

In a numerical scheme, �impulsive heating� can be ap-
proximated by the value of the first time step. In the

present computations the first time step is rather small,

1:04	 10�7 s. Results are shown in Fig. 2 for the mid-
point pressure of the enclosure, where the Rayleigh

number is 104. For the two overheat ratios considered

(A ¼ 1=3 and 1) the pressure increases continuously,
however, the presence of thermoacoustic waves is evi-

dent. The pressure value shows a distinctive peak

whenever the thermoacoustic wave crosses the midpoint.

Strength of the pressure wave is strongly correlated to

the overheat ratio and pressure oscillations are damped

with increasing time. The effect of the gravitational ac-

celeration was found negligible at the early stages of the

flow development and thermoacoustic behavior.

In practice, due to the thermal inertia of a wall and a

heating system and unavoidable heat losses to the en-

vironment, it is difficult to generate a step change (im-

pulsive heating) in the wall temperature. Therefore, the

effect of the rapidity of the wall heating process (gradual

heating) on the thermoacoustic wave behavior was in-

vestigated and results are shown in Fig. 3 (A ¼ 1=3 and
Ra ¼ 104) for the time variation of the midpoint pressure
for three different heating conditions. The gradual

heating process was considered with an exponential ex-

pression:

T �
Lðt�Þ ¼ T �

0 ½1þ Að1� e�t�=shÞ� ð13Þ

Fig. 2. Variation of pressure with time at the midpoint of the

enclosure for two different overheat ratio (Ra ¼ 104).
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where sh is the time constant of the wall heating process.
For impulsive heating, ideally sh ¼ 0. For the two
gradual heating cases given in Fig. 3, sh was sc and 20sc,
respectively, where sc is the travel time of sound waves
for the length of the enclosure (sc ¼ 36:82	 10�6 s). Fig.
3 indicates that the rapidity of the wall heating process

has very significant effect on the strength of the pressure

waves. When sh ¼ 20sc, the strength of the thermo-
acoustic waves are negligible. Fig. 3 also shows the results

of a pressure–velocity formulation based Navier–Stokes

code solution for the impulsive heating case. Pressure–

velocity formulation based Navier–Stokes code we used

is based on discretisation of governing equation with

finite-volume technique and employs implicit time inte-

gration scheme. In this method, pressure is updated

during the solution process from momentum equation

and velocity components are corrected to satisfy conti-

nuity equation. The grid structure and time step size are

identical for the density–velocity formulation of the

Navier–Stokes equations employing the FCT algorithm

and the pressure–velocity formulation of the Navier–

Stokes code. We find that when sufficiently small time

steps are used (time steps that satisfies the Courant

condition), the pressure–velocity formulation of the

Navier–Stokes code predict the propagation of the thermo-

acoustic waves. However, a comparison between the

results clearly indicates that pressure–velocity formula-

tion based Navier–Stokes code is not able to predict the

amplitude of pressure waves accurately.

Computations were then carried out for longer times

(up to t� ¼ 0:025 s) at which the buoyancy-induced flow
fields develop. This value is very large compared to the

acoustic time scale (t� ¼ 36:82	 10�6 s) and is compa-
rable to the value of the viscous (t� ¼ 0:1 s) and thermal
(t� ¼ 0:058 s) time scales which are growth times of the
viscous and thermal boundary layers [14] for the natural

convection problem considered. In Fig. 4, results ob-

tained for the x-component of the velocity vector
are shown along the horizontal mid-plane of the

enclosure for A ¼ 1=3 and Ra ¼ 104 at t� ¼ 0:025 s (t ¼
4:2675	 10�3). These velocity profiles show the signifi-
cance of the thermoacoustic motion on transient heat

convection process. In case of impulsive heating, strong

pressure waves completely change the flow characteris-

tics in the enclosure and thermoacoustic wave effect

dominates the fluid motion. This effect is very clearly

seen on the negative values of the u velocity in Fig. 4.
With gradual heating (where sh ¼ sc) thermoacoustic
effect loses its power and expected flow characteristics of

the buoyancy-driven fluid motion is observed (gradual

heating, sh ¼ 20sc). In Fig. 4, we also show the results
from the pressure–velocity formulation of the Navier–

Stokes code for a gradual heating case (sh ffi 68sc). Since
the heating process is slow, no thermoacoustic waves are

generated.

Fig. 5a–d shows the velocity vectors for the case

where A ¼ 1=3 and Ra ¼ 104. All four figures show the
velocity field in the enclosure at a given time (t� ¼ 0:025 s,
t ¼ 4:2675	 10�3), with different heating conditions of
the left wall. For impulsive heating (Fig. 5a) very strong

back flow is observed as a result of the pressure wave

reflection on the right wall. This behavior significantly

changes in case of gradual heating (sh ¼ sc, Fig. 5b;
sh ¼ 5sc, Fig. 5c; sh ¼ 20sc, Fig. 5d). It is interesting to
note that though the characteristic time for acoustic

wave propagation in the enclosure (sc ¼ 36:82	 10�6 s)
is rather small, the effects of the thermoacoustic waves

are significant even at t� ¼ 0:025 s, as shown in Fig. 5a
for impulsive heating.

Corresponding pressure and temperature fields (at

t� ¼ 0:025 s, t ¼ 4:2675	 10�3) for impulsive heating (as
shown in Fig. 5a) case are given in Fig. 6a,b; and for

gradual heating case (sh ¼ 5sc, as shown in Fig. 5c) are
given in Fig. 7a,b. In case of impulsive heating (Fig. 6a)

pressure in the enclosure is relatively high and does not

vary in the vertical direction. Comparing Fig. 5a with

Fig. 3. Effect of the rapidity of the left wall heating process on

the midpoint pressure of the enclosure (sc ¼ 36:82	 10�6 s,
A ¼ 1=3, Ra ¼ 104).

Fig. 4. Variation of the x-component of the velocity vector
along the horizontal mid-plane of the enclosure (Ra ¼ 104).
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Fig. 6a, it is seen that the location of the thermoacoustic

wave front is characterized by the location (x ffi 0:6) of
the highest velocity, as well as the highest pressure. In

this region, temperature gradient in horizontal direction

is very low (Fig. 6b). For the gradual heating case

considered in Fig. 5c, no thermoacoustic wave front is

found as the buoyancy-induced flow field can develop

unimpeded. Consequently, the pressure field shown in

Fig. 7a is fairly uniform. Comparing Fig. 5c with Fig.

7b, it is seen that in the region where there is no hori-

zontal fluid motion (x ffi 0:6) the heat transport is very
low.

Traditional computational fluid dynamics techniques

employing pressure–velocity formulation of the Navier–

Stokes equations fail to predict the thermoacoustic effect

on the transient buoyancy-driven motion for rapid

heating. In earlier studies [7,8], the signature of the

thermoacoustic waves were not reported accurately––

perhaps due to significant numerical diffusion and the

lack of �characteristic (wave)� type wall boundary con-
ditions in the scheme [13]. The flow fields given in the

earlier papers also do not clearly demonstrate the effects

of thermoacoustic waves on the buoyancy-induced

flows.

Fig. 5. Variation of the velocity vectors and flow field depending on the rapidity of the wall heating process at Ra ¼ 104,
t ¼ 4:2675	 10�3 (t� ¼ 0:025 s): (a) impulsive heating; (b) gradual heating (sc); (c) gradual heating (5sc); (d) gradual heating (20sc).
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The effect of fluid properties on the thermoacoustic

phenomena was investigated next by considering a

helium filled enclosure. Helium has approximately nine

times larger thermal diffusivity than nitrogen. With

the same overheat ratio (A ¼ 1=3) and the same tem-
perature difference (T �

L � T �
R), thermoacoustic waves

generated by sudden (impulsive) heating of the left

wall of the enclosure travel faster (1016 m/s) and

generate stronger pressure waves in helium (Fig. 8a)

compared to the waves generated in nitrogen. The

stronger thermoacoustic waves in helium are due to

the small value of the density of helium. In Fig. 8b,

the time variation of the Nusselt number at the right

wall is shown for the helium and the nitrogen cases for

impulsive heating. Higher heat transfer rates are

achieved for helium at the right wall of the enclosure

at the instances when the acoustic waves impinge on

the wall. The higher values in the heat transfer coef-

ficient are due to the stronger thermoacoustic waves

produced in helium. Due to the faster acoustic speed

of helium, the peaks (caused by wall impingement)

occur more frequently than that for nitrogen.

Fig. 6. Variation of pressure and temperature in the enclosure at t ¼ 4:2675	 10�3 (t� ¼ 0:025 s): impulsive heating (Ra ¼ 104).

Fig. 7. Variation of pressure and temperature in the enclosure at t ¼ 4:2675	 10�3 (t� ¼ 0:025 s): gradual heating (5sc, Ra ¼ 104).
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For the same heating condition, computations were

also carried out for longer time to investigate the de-

velopment of the flow field for the helium case. Instan-

taneous velocity vectors are shown in Fig. 9a,b for

nitrogen and helium at t� ¼ 0:01 s, respectively due to
impulsive heating. For both cases, the temperature dif-

ference (T �
L � T �

R) and geometry are the same. In nitro-

gen (Fig. 9a), thermoacoustic waves and resulting flow

are relatively strong and the flow field appears to be

one-dimensional. However, in helium due to the high

thermal diffusivity and the higher frequency of wall re-

flection, the thermoacoustic waves (though stronger at

the time of inception) decay faster. Hence, in Fig. 9b, the

flow field for helium at t� ¼ 0:01 s appears to be buoy-
ancy dominated and the effects of thermoacoustic waves

are less dominant.

5. Conclusions

The effects of the thermoacoustic phenomena on the

transient natural convection process in an enclosure

were studied by solving the unsteady compressible

Navier–Stokes equations. The effects of the pressure

(thermoacoustic) waves on the transient natural heat

convection process and flow development were deter-

mined by utilizing a highly accurate FCT algorithm.

Thermoacoustic waves were generated by increasing the

left wall temperature of the enclosure impulsively (sud-

denly) or gradually and rapidity of the wall heating

process was observed to be the leading parameter on the

strength of the thermoacoustic waves. Also, the strength

of the pressure waves was found directly proportional to

the temperature increase ratio on the wall. Significant

Fig. 8. Effect of thermoacoustic wave motion on (a) midpoint pressure and (b) Nusselt number at the right wall of the enclosure for

two different gases.

Fig. 9. Distribution of the velocity vectors in the flow field for two different gases at t� ¼ 0:01 s: (a) nitrogen; (b) helium.
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effect of the fluid thermal diffusivity on thermoacoustic

convection phenomena was observed while the effect of

the gravitational acceleration was found negligible on

thermoacoustic behavior for early times.
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